Abelian integrals in holomorphic foliations

نویسنده

  • Hossein Movasati
چکیده

The aim of this paper is to introduce the theory of Abelian integrals for holomorphic foliations in a complex manifold of dimension two. We will show the importance of Picard-Lefschetz theory and the classification of relatively exact 1-forms in this theory. As an application we identify some irreducible components of the space of holomorphic foliations of a fixed degree and with a center singularity in the projective space of dimension two. Also we calculate higher Melnikov functions under some generic conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commuting holonomies and rigidity of holomorphic foliations

In this article we study deformations of a holomorphic foliation with a generic non-rational first integral in the complex plane. We consider two vanishing cycles in a regular fiber of the first integral with a non-zero self intersection and with vanishing paths which intersect each other only at their start points. It is proved that if the deformed holonomies of such vanishing cycles commute t...

متن کامل

Stability of Holomorphic Foliations with Split Tangent Sheaf

We show that the set of singular holomorphic foliations on projective spaces with split tangent sheaf and good singular set is open in the space of holomorphic foliations. We also give a cohomological criterion for the rigidity of holomorphic foliations induced by group actions and prove the existence of rigid codimension one foliations of degree n − 1 on P for every n ≥ 3.

متن کامل

An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system

In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...

متن کامل

N ov 2 00 8 Existence and Stability of Foliations by J – Holomorphic Spheres

We study the existence and stability of holomorphic foliations in dimension greater than 4 under perturbations of the underlying almost complex structure. An example is given to show that, unlike in dimension 4, J–holomorphic foliations are not stable under large perturbations of almost complex structure.

متن کامل

Existence and Stability of Foliations by J–Holomorphic Spheres

We study the existence and stability of holomorphic foliations in dimension greater than 4 under perturbations of the underlying almost complex structure. An example is given to show that, unlike in dimension 4, J–holomorphic foliations are not stable under large perturbations of almost complex structure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004